Abstract
This study comprehensively examines how combining γ-irradiation and enzymatic modification influences the microstructure and physicochemical properties of dietary fiber (DF) obtained from defatted rice bran. The resulting yields of soluble dietary fiber (SDF) and insoluble dietary fiber (IDF) were measured at 13.38 ± 0.40 g/100 g and 52.19 ± 0.97 g/100 g, respectively. The modifications led to a diminish in particle size, an increase in specific surface area, and an improvement in water-holding capacity, oil-holding capacity, swelling capacity, glucose adsorption capacity, and cholesterol adsorption capacity. Furthermore, the modified DF exhibited enhanced anti-digestive properties and probiotic activity. Cluster and principal component analysis results revealed that the modified SDF exhibited superior functional properties. Correlation analysis indicated a noticeable relationship between the monosaccharide composition of DF and its functional characteristics. These findings suggest that γ-irradiation combined with enzymatic modification represents a viable approach for enhancing the quality of rice bran DF.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have