Abstract

The microstructure and mechanical properties of cast Al‐Cu‐Mn alloy influenced by various Sc additions (viz. 0.1, 0.2, 0.3, 0.4, and 0.5 wt%) are investigated. It is found that the grain size of α‐Al and the area proportion of the second phase are decreased with the addition of Sc. In addition, the morphology of the precipitated phase in Al‐Cu‐Mn alloy also evolves at different stages, and the solidification temperature range and initial enthalpy change of the alloy are changed, resulting in the formation of a variety of second‐phase containing Sc. Owing to the grain refinement and precipitation strengthening effects, the hardness of as‐cast alloys is better than T6 alloys. Moreover, it is observed that when the Sc content is 0.3%, the mechanical properties of the as‐cast Al‐Cu‐Mn alloy are the minimum, and the Al‐Cu‐Mn alloys after T6 heat treatment are the maximum. These results confirm that the mechanical properties improvement effect of the as‐cast Al‐Cu‐Mn alloy is greater than that of the T6 heat treatment Al‐Cu‐Mn alloy with the addition of Sc. Meanwhile, the Orowan strengthening mechanism is found to have lost its dominant position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.