Abstract
To investigate the efficacy of sacral nerve stimulation (SNS) on nerve growth factor (NGF) mediated visceral sensitivity in normal rat and visceral hypersensitivity model rats. 120 male newborn rats were randomly divided into 6 groups: group A was normal model group; group B ~ F were all sensitized with acetic acid enema and grouped again. Group c2 was given NGF antagonist, d2 group was given NGF agonist, e2 group was given PI3K inhibitor, and f2 group was given PLC‐γ inhibitor. After treatment, the expression of NGF, TrKA, PI3K, AKT, PLC‐γ, NF‐κB, TRPV1, pTRPV1 and intracellular Ca2+ content were detected. The expression of protein TRPV1 and pTRPV1 was increased, and Ca2+ was increased in the visceral hypersensitive group. NGF, TrKA in NGF antagonist group, PI3K, AKT, NF‐κB in PI3K inhibitor group, PLC‐γ in PLC‐γ inhibitor group were all almost not expressed. The relative expression of NGF, TrKA, PI3K, AKT, PLC‐γ and NF‐κB in NGF antagonist group was lower than that in visceral hypersensitivity group and NGF activator group (P < .01). The relative expression of NGF, TrKA, PI3K and AKT mRNA in NGF antagonist group was lower than that in the normal model group (P < .01). There was no significant difference in the relative expression of PLC‐γ and NF‐κB mRNA (P > .05). The expression level of MAPK, ERK1 and ERK2 in visceral hypersensitivity group was higher than that in PI3K inhibitor group and PLC‐γ inhibitor group. The normal group Ca2+ curve was flat, and the NGF agonist group had the highest Ca2+ curve peak. Calcium concentration in visceral hypersensitivity group was higher than that in PI3K inhibitor group and that in PLC‐γ inhibitor group was higher than that in NGF antagonist group. The binding of TrkA receptor to NGF activates the MAPK/ERK pathway, the PI3K/Akt pathway and the PLC‐γ pathway, causing changes in the fluidity of intracellular and extracellular Ca2+, resulting in increased sensitivity of visceral tissues and organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.