Abstract

To observe the preventive effect of polydatin on diabetic myocardial hypertrophy in mice and discuss its and mechanism. The diabetic model was induced with low dose STZ (40 mg x kg(-1) x d(-1) x 5 d, ip) for five days in mice. The myocardial hypertrophy was determined by hypertrophy indexes (LVHI, left ventricular/right ventricle and septum), left ventricular/body weight (LV/BW), the histological examination and the mRNA expression of atrial natriuretic factor(ANF). The fast blood glucose(FBG), serum insulin and plasma hemoglobin A1c ( HbA1c) levels were detected, and then HOMA insulin resistance index ( HOMA. IR) was calculated. The mRNA and protein expressions were measured by qRT-PCR and western blotting, respectively. According to the results, the FBG of the model group exceeded 11.1 mmol x L(-1), with notable decrease in BW and significant increase in insulin, HbA1c and HOME. IR, suggesting the successful establishment and stability of the diabetic model. The increases in LVHI, LV/BW, cell surface and ANF mRNA indicated a myocardial hypertrophy in diabetic mice. Meanwhile, the model group showed decrease in mRNA and protein expressions of PPARβ and significant increase in NF-κB p65, COX-2 and iNOS expressions. After the preventation with PD (50, 100 mg x kg(-1) x d(-1)), diabetic mice showed increase in BW, reduction in the levels of FBG, insulin and HbA1 c, relief in insulin resistance and significant recovery in hypertrophy indexes, indicating PD has the protective effect in diabetic myocardial hypertrophy. Meanwhile, PD up-regulated the expression of PPARβ, inhibited the expressions of NF-κB p65, COX-2 and iNOS, demonstrating that PD's protective effect may be related to the activation of PPARβ and the inhibition of NF-κB, COX-2 and iNOS signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call