Abstract
Recently, electroencephalogram (EEG) signal provides great potential for identification systems. Many studies have shown that the EEG introduces unique, universal features and natural robustness for spoofing attacks. The EEG represents a graphic recording of the electrical activity of the brain that can be measured by placing sensors (electrodes) at different locations on the scalp. This chapter proposes a new technique using unsupervised clustering and optimization techniques for user identification-based EEG signals. The proposed method employs four algorithms which are Genetic Algorithm (GA), Multi-verse Optimizer (MVO), Particle Swarm Optimization (PSO) and the k-means algorithm. A standard EEG motor imagery dataset is used to evaluate the proposed method’s performance, and its results are evaluated using four criteria: (i) Precision, (ii) Recall, (iii) F-Score and (v) Purity. It is worth mentioning that this work is one of the first to employ optimization methods with unsupervised clustering methods for person identification using EEG. As a conclusion, the MVO algorithm achieved the best results compared with GA, PSO and k-means. Finally, the proposed method can draw future directions to apply to different research areas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have