Abstract

The identification of specific components in EEG signals is often key when designing EEG-based brain-computer interfaces (BCIs), and a good understanding of the factors that elicit such components can be helpful when it comes to precise, energy-efficient and time-accurate actuation of exoskeletons. CNVs (Contingent Negative Variations), ERDs or ERSs (Event-Related Desynchronizations/Synchronizations) as well as ErrPs (Error-Related Potentials) are particularly important components can be identified during motor tasks and related to specific events in a Coincident Timing (CT) task. This work investigates offline EEG signals acquired during an upper limb CT task and analyzes the task protocol with the purpose of correlating the aforementioned EEG features to movement onset. CNVs and ERD/ERS were successfully identified after averaging multiple trials, and it was further concluded that complementary information about muscle activity (via EMG) as well as video tracking of arm movement play a critical role in the synchronization of EEG components with movement onset. The framework for EEG analysis presented in this paper allows for future development of a BCI on top of this CT task capable of assessing motor learning and actuating an exoskeleton to enable faster motor rehabilitation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call