Abstract
Educational big data is becoming a strategic educational asset, exceptionally significant in advancing educational reform. The term educational big data stems from the rapidly growing educational data development, including students' inherent attributes, learning behavior, and psychological state. Educational big data has many applications that can be used for educational administration, teaching innovation, and research management. The representative examples of such applications are student academic performance prediction, employment recommendation, and financial support for low-income students. Different empirical studies have shown that it is possible to predict student performance in the courses during the next term. Predictive research for the higher education stage has become an attractive area of study since it allowed us to predict student behavior. In this survey, we will review predictive research, its applications, and its challenges. We first introduce the significance and background of educational big data. Second, we review the students' academic performance prediction research, such as factors influencing students' academic performance, predicting models, evaluating indices. Third, we introduce the applications of educational big data such as prediction, recommendation, and evaluation. Finally, we investigate challenging research issues in this area. This discussion aims to provide a comprehensive overview of educational big data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.