Abstract
BackgroundElectroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. In this paper we present one of the integral parts of EBTT: an e-learning practical work we developed to complement delivery of knowledge via lectures and laboratory work, thus providing a blended learning approach on electrical phenomena involved in electroporation-based therapies and treatments.MethodsThe learning effect was assessed via a pre- and post e-learning examination test composed of 10 multiple choice questions (i.e. items). The e-learning practical work session and both of the e-learning examination tests were carried out after the live EBTT lectures and other laboratory work. Statistical analysis was performed to compare and evaluate the learning effect measured in two groups of students: (1) electrical engineers and (2) natural scientists (i.e. medical doctors, biologists and chemists) undergoing the e-learning practical work in 2011–2014 academic years. Item analysis was performed to assess the difficulty of each item of the examination test.ResultsThe results of our study show that the total score on the post examination test significantly improved and the item difficulty in both experimental groups decreased. The natural scientists reached the same level of knowledge (no statistical difference in total post-examination test score) on the post-course test take, as do electrical engineers, although the engineers started with statistically higher total pre-test examination score, as expected.ConclusionsThe main objective of this study was to investigate whether the educational content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during EBTT. We compared the learning effect assessed in two experimental groups undergoing the e-learning practical work: electrical engineers and natural scientists. The same level of knowledge on the post-course examination was reached in both groups. The results indicate that our e-learning platform supported by blended learning approach provides an effective learning tool for populations with mixed professional backgrounds and thus plays an important role in bridging the gap between scientific domains involved in electroporation-based technologies and treatments.Electronic supplementary materialThe online version of this article (doi:10.1186/s12938-016-0152-7) contains supplementary material, which is available to authorized users.
Highlights
Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science
The main objective of this study was to investigate whether the educa‐ tional content the e-learning practical work presented to the students with different professional backgrounds enhanced their knowledge acquired via lectures during electroporation based technologies and treatments (EBTT)
We compared the learning effect assessed in two experimental groups undergo‐ ing the e-learning practical work: electrical engineers and natural scientists
Summary
Electroporation-based applications require multidisciplinary expertise and collaboration of experts with different professional backgrounds in engineering and science. Beginning in 2003, an international scientific workshop and postgraduate course electroporation based technologies and treatments (EBTT) has been organized at the University of Ljubljana to facilitate transfer of knowledge from leading experts to researches, students and newcomers in the field of electroporation. An international scientific workshop and postgraduate course Electroporation based technologies and treatments (EBTT) has been organized biennially from 2003–2009 and annually since 2011 at the University of Ljubljana with the aim of conveying the knowledge from world leading experts in the field of electroporation to students, most of which are Ph.D. students and early stage researchers with different academic backgrounds coming from scientific domains, interested in electroporation [8]. The modular structure of e-learning practical work brings together both experimental and theoretical findings, as well as cutting-edge insights from molecular dynamics simulations, and allows for both continuous upgrades with new content being published within the scientific literature on electroporation based applications and for learning effectiveness evaluation
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have