Abstract
(EDT-TTF-CONH2)6[Re6Se8(CN)6], space group R, was prepared by electrocrystallization from the primary amide-functionalized ethylenedithiotetrathiafulvalene, EDT-TTF-CONH2 (E(1/2)1 = 0.49 V vs SCE in CH3CN), and the molecular cluster tetraanion, [Re6Se8(CN)6]4- (E(1/2) = 0.33 V vs SCE in CH3CN), equipped with hydrogen bond donor and hydrogen bond acceptor functionalities, respectively. Its Kagome topology is unprecedented for any TTF-based materials. The metallic state observed at room temperature has a strong two-dimensional character, in coherence with the Kagome lattice symmetry, and the presence of minute amounts of [Re6Se8(CN)6](3-)* identified by electron spin spectroscopy. A structural instability toward a distorted form of the Kagome topology of lesser symmetry is observed at ca. 180 K. The low-temperature structure is associated with a localized, electrically insulating electronic ground state and its magnetic susceptibility accounted for by a model of uniform chains of localized S = 1/2 spins in agreement with the 100 K triclinic crystal structure and band structure calculations. A sliding motion, within one out of the three (EDT-TTF-CONH2)2 dimers coupled to the [Re6Se8(CN6)(3-)*]/[Re6Se8(CN6)4-] proportion at any temperature, and the electronic ground state of the organic-inorganic hybrid material are analyzed on the basis of ESR, dc conductivity, 1H spin-lattice relaxation, and static susceptibility data which qualify a Mott localization in [EDT-TTF-CONH2]6[Re6Se8(CN)6]. The coupling between the metal-insulator transition and a structural transition allows for the lifting of a degeneracy due to the ternary axis in the high temperature, strongly correlated metallic phase which, in turn, leads to Heisenberg chains at low temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have