Abstract

Heat-stable peptidases released in refrigerated raw milk by psychrotrophic bacteria are responsible for UHT milk gelation. K-casein-derived caseinomacropeptides, identified by mass spectrometry, were constantly detected in gelled milk by capillary electrophoresis. Strains of Pseudomonas fluorescens, Ps. poae and Chryseobacterium joostei, selected among aprX-positive strains from raw milk, were incubated in milk up to 6 days at 4 °C before sterilization (98 °C/4 min). Samples were then stored at 25 or 40 °C, visually observed for gelation, and analysed for presence of caseinomacropeptides throughout 90 days of storage. Depending on cold pre-incubation time, caseinomacropeptides accumulated well before gelation onset in milk stored at 25 °C. Caseinomacropeptides were successively degraded, especially in milk stored at 40 °C, due to extensive proteolysis, and an abundant sediment developed instead of a gel. The caseinomacropeptides are here presented as an early indicator of UHT milk gelation and a mechanism explaining this phenomenon is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call