Abstract

By sequestering fuel in the environment and acting as a carbon trap, forests play a crucial role in battling climate change. The structure of the organisms and the carbon stock were analyzed using a standardized sampling approach over environmental gradients. In the 36 quadrant plots of 20 x 20 m each spread along transect lines, data was collected. Breast diameter ≥ 5cm and overall measured height for each tree in the main map. Using the allometric equation, above and below land biomass was measured, while the litter carbon was estimated as carbon by taking 50 percent of dry biomass. Soil samples were obtained using an auguring process and carbon was analyzed using the Walkley-Black method, while bulk density was analyzed using the oven-dried method. The data was analyzed using R software's one-way ANOVA. The carbon stocks showed distinct differences in environmental gradients in the aboveground, belowground, litter biomass and soil organic carbon. The carbon stock above and below ground has shown a declining pattern along with rising altitude, although organic soil carbon and liter carbon showed a rising pattern along with altitude rise. The mean above and below field carbon stocks were respectively 156.60 t C ha-1 and 31.32 t C ha-1 while the stocks of litter carbon and soil organic carbon were respectively 2.72 t C ha-1 and 125.86 t C ha-1. The Gara-Mukitar forest's overall carbon stock density was found to be 316.6±67.15 t C ha-11. Similarly, in the above ground biomass, 49.5 percent of carbon was found, 9.9 percent in underground biomass, 0.9 percent in litter carbon and 39.8 percent in soil organic carbon (0-30 cm deep).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call