Abstract

Accurate, real-time object detection on resource-constrained devices enables autonomous mobile vision applications such as traffic surveillance, situational awareness, and safety inspection, where it is crucial to detect both small and large objects in crowded scenes. Prior studies either perform object detection locally on-board or offload the task to the edge/cloud. Local object detection yields low accuracy on small objects since it operates on low-resolution videos to fit in mobile memory. Offloaded object detection incurs high latency due to uploading high-resolution videos to the edge/cloud. Rather than either pure local processing or offloading, we propose to detect large objects locally while offloading small object detection to the edge. The key challenge is to reduce the latency of small object detection. Accordingly, we develop, the first edge-device collaborative framework for enhancing small object detection with tile-level parallelism. It optimizes the offloaded detection pipeline in tiles rather than the entire frame for high accuracy and low latency. Evaluations on drone vision datasets under LTE, WiFi 2.4GHz, WiFi 5GHz show that outperforms local object detection in small object detection accuracy by 233.0%. It also improves the detection accuracy by 44.7% and latency by 34.2% over the state-of-the-art offloading schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.