Abstract

Su–Schrieffer–Heeger (SSH) model is one of the simplest models to show topological end/edge states and the existence of Majorana fermions. Here we consider a SSH like model both in one and two dimensions where a nearest neighbor hopping features spatially periodic modulations. In the 1D chain, we witness appearance of new in-gap end states apart from a pair of Majorana zero modes (MZMs) when the hopping periodicity go beyond two lattice spacings. The pair of MZMs, that appear in the topological regime, characterize the end modes each existing in either end of the chain. These, however, crossover to both-end end modes for small hopping modulation strength in a finite chain. Contrarily in a 2D SSH model with symmetric hopping that we consider, both non-zero and zero energy topological states appear in a finite square lattice even with a simple staggered hopping, though the zero energy modes disappear in a ribbon configuration. Apart from edge modes, the 2D system also features corner modes as well as modes with satellite peaks distributed non-randomly within the lattice. In both the dimensions, an increase in the periodicity of hopping modulation causes the zero energy Majorana modes to become available for either sign of the modulation. But interestingly with different periodicity for hopping modulations in the two directions, the zero energy modes in a 2D model become rarer and does not appear for all strength and sign of the modulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.