Abstract

Referencing schemes are commonly used in heterodyned spectroscopies to mitigate correlated baseline noise arising from shot-to-shot fluctuations of the local oscillator. Although successful, these methods rely on careful pixel-to-pixel matching between the two spectrographs. A recent scheme introduced by Feng et al. [Opt. Express 27(15), 20323-20346 (2019)] employed a correlation matrix to allow free mapping between dissimilar spectrographs, leading to the first demonstration of floor noise limited detection on a multichannel array used in heterodyned spectroscopy. In addition to their primary results using a second reference spectrometer, Feng et al. briefly demonstrated the flexibility of their method by referencing to same-array pixels at the two spectral edges (i.e., edge-pixel referencing). We present a comprehensive study of this approach, which we term edge-pixel referencing, including optimization of the approach, assessment of the performance, and determination of the effects of background responses. We show that, within some limitations, the distortions due to background signals will not affect the 2D IR line shape or amplitude and can be mitigated by band narrowing of the pump beams. We also show that the performance of edge-pixel referencing is comparable to that of referencing to a second spectrometer in terms of noise suppression and that the line shapes and amplitudes of the spectral features are, within the measurement error, identical. Altogether, these results demonstrate that edge-pixel referencing is a powerful approach for noise suppression in heterodyned spectroscopies, which requires no new hardware and, so, can be implemented as a software solution for anyone performing heterodyned spectroscopy with multichannel array detectors already.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call