Abstract

We report a structural study on the membrane binding of ovispirin using 2D IR line shape analysis, isotope labeling, and molecular dynamics simulations. Ovispirin is an antibiotic polypeptide that binds to the surfaces of membranes as an alpha-helix. By resolving individual backbone vibrational modes (amide I) using 1-(13)C=(18)O labeling, we measured the 2D IR line shapes for 15 of the 18 residues in this peptide. A comparison of the line shapes reveals an oscillation in the inhomogeneous line width that has a period equal to that of an alpha-helix (3.6 amino acids). The periodic trend is caused by the asymmetric environment of the membrane bilayer that exposes one face of the alpha-helix to much stronger environmental electrostatic forces than the other. We compare our experimental results to 2D IR line shapes calculated using the lowest free energy structure identified from molecular dynamics simulations. These simulations predict a periodic trend similar to the experiment and lead us to conclude that ovispirin lies in the membrane just below the headgroups, is tilted, and may be kinked. Besides providing insight into the antibiotic mechanism of ovispirin, our procedure provides an infrared method for studying peptide and protein structures that relies on the natural vibrational modes of the backbone. It is a complementary method to other techniques that utilize line shapes, such as fluorescence, NMR, and ESR spectroscopies, because it does not require mutations, the spectra can be quantitatively simulated using molecular dynamics, and the technique can be applied to difficult-to-study systems like ion channels, aggregated proteins, and kinetically evolving systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call