Abstract

Principal component analysis (PCA) has been widely used to deal with high-dimensional gene expression data. In this study, we proposed an Edge-group Sparse PCA (ESPCA) model by incorporating the group structure from a prior gene network into the PCA framework for dimension reduction and feature interpretation. ESPCA enforces sparsity of principal component (PC) loadings through considering the connectivity of gene variables in the prior network. We developed an alternating iterative algorithm to solve ESPCA. The key of this algorithm is to solve a new k-edge sparse projection problem and a greedy strategy has been adapted to address it. Here we adopted ESPCA for analyzing multiple gene expression matrices simultaneously. By incorporating prior knowledge, our method can overcome the drawbacks of sparse PCA and capture some gene modules with better biological interpretations. We evaluated the performance of ESPCA using a set of artificial datasets and two real biological datasets (including TCGA pan-cancer expression data and ENCODE expression data), and compared their performance with PCA and sparse PCA. The results showed that ESPCA could identify more biologically relevant genes, improve their biological interpretations and reveal distinct sample characteristics. An R package of ESPCA is available at http://page.amss.ac.cn/shihua.zhang/. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.