Abstract
Principal component analysis (PCA) achieves dimension reduction by replacing the original measured variables with a smaller set of derived variables called the principal components. Sparse PCA improves this with sparsity. There are two kinds of sparse PCA; sparse loading PCA (slPCA) which keeps all the measured variables but zeroes out some of their loadings; and sparse variable PCA (svPCA) which removes some measured variables completely by simultaneously zeroing out all their loadings. Because it zeroes out some measured variables completely svPCA is capable of huge additional dimension reduction beyond PCA; while slPCA keeps all measured variables and does not have this capability. Here we consider a vector l0 penalized likelihood approach to svPCA and develop a penalized expectation-maximization (pEM) algorithm which remarkably, in an l0 setting, leads to a closed form M-step and we provide a convergence analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.