Abstract

Semantic Segmentation and edge detection are important research fields for scene understanding in computer vision. A hierarchical framework called Contextual Hierarchical Model (CHM) was proposed for semantic image segmentation and edge detection. It learned contextual information using a Logistic Disjunctive Normal Networks (LDNN) classifier. The class average accuracy of CHM was improved by defining a global constraint using Conditional Random Field (CRF), Hierarchical CRF (HCRF), Higher order HCRF (HHCRF). The LDNN was improved by using proximal gradient method which minimizes the quadratic error and it had high convergence rate than gradient descent method. The weight and bias terms of LDNN was optimized by using Grey Wolf Optimization algorithm (GWO) which improves the classification accuracy and it also reduces time complexity of LDNN. During the edge detection using CHM, a multi-scale strategy was adopted to compute edge maps. A Non-Maximum Suppression (NMS) was used to obtain the thinned edges in images. However, it is a post-processing step which consumes additional time in edge detection process. So, in this paper, the edge detection is interpreted as a classification problem where the thinned edges in images are obtained without any post-processing step. It reduces the time consumption. Two key ingredients such as loss and joint processing are included in NMS to improve the detection of thinned edges. The loss is used to penalize the double edge detection and the joint processing is used to reduce the loss of edge detection by including a pair features as additional feature for edge detection. The pair features, Haar, Histogram of Gradient (HOG) and SIFT features are given as input to LDNN to detect the edges that improve the efficiency of CHM based edge detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.