Abstract

The transition towards more sustainable energy management can be supported by the diffusion of energy communities, i.e., coalitions of prosumers that are willing to exchange the energy produced locally. The optimization of energy management requires the solution of a prosumer problem that can become impractical when the number of users increases. This paper presents a parallel approach, based on an edge computing architecture, which is suitable for large communities. The users are partitioned into groups whose proportions, in terms of producers and consumers, mirror the composition of the whole community. The prosumer problems for the different groups are first solved separately and in parallel by local edge nodes. Then, the solutions are combined by a central entity to redistribute the energy among the groups and minimize the exchange of energy with the external grid. A set of experiments show that the parallel approach, when compared with an approach that solves the optimization problem in a single stage, leads to a notable reduction of computing resources, and becomes feasible in large communities for which the single-stage approach is impossible. Moreover, the achieved solution is close to the optimal solution in terms of energy costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.