Abstract

Buildings consume a significant amount of energy throughout their lifecycle; Thus, sustainable energy management is crucial for all buildings, and controlling energy consumption has become increasingly important for achieving sustainable construction. Digital twin (DT) technology, which lies at the core of Industry 4.0, has gained widespread adoption in various fields, including building energy analysis. With the ability to monitor, optimize, and predict building energy consumption in real time. DT technology has enabled sustainable building energy management and cost reduction. This paper provides a comprehensive review of the development and application of DT technology in building energy. Specifically, it discusses the background of building information modeling (BIM) and DT technology and their application in energy optimization in buildings. Additionally, this article reviews the application of DT technology in building energy management, indoor environmental monitoring, and building energy efficiency evaluation. It also examines the benefits and challenges of implementing DT technology in building energy analysis and highlights recent case studies. Furthermore, this review emphasizes emerging trends and opportunities for future research, including integrating machine learning techniques with DT technology. The use of DT technology in the energy sector is gaining momentum as efforts to optimize energy efficiency and reduce carbon emissions continue. The advancement of building energy analysis and machine learning technologies is expected to enhance prediction accuracy, optimize energy efficiency, and improve management processes. These advancements have become the focal point of current literature and have the potential to facilitate the transition to clean energy, ultimately achieving sustainable development goals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.