Abstract

A growing number of humans have suffered severe chronic illnesses, which has caused a boost in the requirement for diagnostic and medical treatment procedures that are both accurate and fast. Improved patient conditions and enhanced Decision-Making Systems (DMS) for healthcare professionals are the primary objectives of the Clinical Decision Support System (CDSS) recommended in this research article. The main drawback of traditional Machine Learning (ML) techniques is their failure to predict reliably. To solve this problem, the proposed model creates an Ensemble Extreme Learning Machine (EN-ELM) algorithm that combines predictors trained on several different data sets. This lowers the chance of overfitting. The suggested CDSS uses many different data processing methods, including Adaptive Synthetic (ADASYN) and isolation Forest (iForest), which fix problems like outliers and class imbalance. This approach significantly enhances the framework’s classification performance. Also, the CDSS is compatible with an EC model, which enables real-time computation while minimizing the requirement for integrated systems. The recommended CDSS applies iForest and ADASYN to execute large-scale trials validating high standards of accuracy across numerous datasets. Researchers concluded that a suitable ELM classification threshold of 85% is the most effective, which substantially boosts the accuracy of the predictive model. When applied to various medical datasets, such as Hepatocellular Carcinoma (HCC), Cervical Cancer, Chronic Kidney Disease (CKD), Heart Disease, and Arrhythmia, the EN-ELM achieved accuracy rates of 99.36%, 98.15%, 97.85%, 97.06%, and 96.72%, respectively. By measuring this progress, the CDSS could dramatically improve the accuracy of chronic illness diagnosis and treatment, which similarly affects clinicians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.