Abstract

In this paper, a new multi-pole double-stator inset-type permanent magnet (PM) machine is proposed for low-speed direct-drive applications. In the outer stator, a fractional-slot concentrated winding is adopted to reduce the slot number and stator yoke height, hence saving the space and improving the torque density. In the inner stator, a vernier structure is used to reduce the winding slots and enlarge the slot area to accommodate more conductors, hence fully utilizing the inner stator space. Consequently, the torque density is improved, and the cogging torque is reduced. Since the machine structure is so unique while its operating principle is so distinct, a nodal method based network-field coupled time-stepping finite element method (NF-TS-FEM) is newly developed. The corresponding modeling and analysis are simpler and more convenient than its loop method based counterpart. The analysis of eddy-current loss in both of the PMs is conducted. The performance of the proposed machine is verified by the proposed NF-TS-FEM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.