Abstract
We have mapped out the ectosylvian visual area (EVA) of the cat in a series of single- and multiunit recording studies. EVA occupies 10-20 mm2 of cortex at the posterior end of the horizontal limb of the anterior ectosylvian sulcus. EVA borders on somatosensory cortex anteriorly, auditory cortex posteriorly, and nonresponsive cortex laterally. EVA exhibits limited retinotopic organization, as indicated by the fact that receptive fields shift gradually with tangential travel of the microelectrode through cortex. However, a point-to-point representation of the complete visual hemifield is not present. We have characterized the afferent and efferent connections of EVA by placing retrograde and anterograde tracer deposits in EVA and in other cortical visual areas. The strongest transcortical fiber projection to EVA arises in the lateral suprasylvian visual areas. Area 20, the granular insula, and perirhinal cortex provide additional sparse afferents. The projection from lateral suprasylvian cortex to EVA arises predominantly in layer 3 and terminates in layer 4. EVA projects reciprocally to all cortical areas from which it receives input. The projection from EVA to the lateral suprasylvian areas arises predominantly in layers 5 and 6 and terminates in layer 1. EVA is linked reciprocally to a thalamic zone encompassing the lateromedial-suprageniculate complex and the adjacent medial subdivision of the latero-posterior nucleus. We conclude that EVA is an exclusively visual area confined to the anterior ectosylvian sulcus and bounded by nonvisual cortex. EVA is distinguished from other visual areas by its physical isolation from those areas, by its lack of consistent global retinotopic organization, and by its placement at the end of a chain of areas through which information flows outward from the primary visual cortex.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have