Abstract

WOX5 has a potential in activating cytokinin signaling and shoot regeneration, in addition to its role in pluripotency acquisition. Thus, overexpression of WOX5 maximizes plant regeneration capacity during tissue culture. In vitro plant regeneration involves two steps: callus formation and de novo shoot organogenesis. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) homeodomain transcription factor is known to be mainly expressed during incubation on callus-inducing medium (CIM) and involved in pluripotency acquisition in callus, but whether WOX5 also affects de novo shoot regeneration on cytokinin-rich shoot-inducing medium (SIM) remains unknown. Based on the recent finding that WOX5 promotes cytokinin signaling, we hypothesized that ectopic expression of WOX5 beyond CIM would further enhance overall plant regeneration capacity, because intense cytokinin signaling is particularly required for shoot regeneration on SIM. Here, we found that overexpression of the WOX5 gene on SIM drastically promoted de novo shoot regeneration from callus with the repression of type-A ARABIDOPSIS RESPONSE REGULATOR (ARR) genes, negative regulators of cytokinin signaling. The enhanced shoot regeneration phenotypes were indeed dependent on cytokinin signaling, which were partially suppressed in the progeny derived from crossing WOX5-overexpressing plants with cytokinin-insensitive 35S:ARR7 plants. The function of WOX5 in enhancing cytokinin-dependent shoot regeneration is evolutionarily conserved, as conditional overexpression of OsWOX5 on SIM profoundly enhanced shoot regeneration in rice callus. Overall, our results provide the technical advance that maximizes in vitro plant regeneration by constitutively expressing WOX5, which unequivocally promotes both callus pluripotency and de novo shoot regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call