Abstract

Under conditions of nitrogen limitation, soil bacteria of the genus Rhizobium are able to induce the development of symbiotic nodules on the roots of leguminous plants. During nodule organogenesis, bacteria are released endocytotically inside the invaded plant cells where they differentiate into their endosymbiotic form called bacteroids. Bacteroids surrounded by a plant-derived peribacteroid membrane are nondividing, organelle-like structures, called symbiosomes, that use nitrogenase to reduce N2 to ammonia. Experiments performed in vitro with isolated symbiosomes have previously led to the suggestion that the NH3 produced by the bacteroids is released as NH4+ into the plant cytosol. Furthermore, it was observed that the bacterial amtB (ammonium/methylammonium transport B) gene is switched off very early during symbiosis, just when bacteria are released into the host cells. We report here that the ectopic expression of amtB in bacteroids alters the ability of bacteria to invade the host cells and the symbiosome differentiation process. Both the NtrC protein, which controls the expression of the bacterial genes involved in NH4+ assimilation, and the nitrogenase activity are essential to observe the amtB-mediated effect. Our results support the idea that in vivo bacteroids do not take up NH4+ and demonstrate that the transcriptional down-regulation of the amtB gene is essential for an effective symbiotic interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.