Abstract

Abstract The purpose of this study was to investigate whether salinity adaptation can alter the purinergic (ecto-nucleoside triphosphate diphosphohydrolase; NTPDase and, 5′-nucleotidase) and cholinergic (acetylcholinesterase; AChE) systems in whole brain and blood tissue of the silver catfish, Rhamdia quelen. Silver catfish were gradually adapted to salinities of 0, 4 or 8 ppt and maintained at the experimental salinity for 10 days before brain and blood samples were collected. Blood AChE activity decreased significantly at 8 ppt and significant decreases in AChE activity were observed in the brain with salinity increases. ATP hydrolysis did not change between the groups. In contrast, ADP and AMP hydrolysis in silver catfish maintained at salinities of 4 and 8 ppt were significantly higher than those kept at 0 ppt. In conclusion, this study showed that there is an enhancement in the NTPDase (ADP hydrolysis) and 5′-nucleotidase activities in the brains of silver catfish exposed to increased salinity. Therefore, the activities of these enzymes can act as markers of salinity changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call