Abstract

Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583μgL−1 molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219μgL−1. From OPV, copper (14μgL−1), zinc (87μgL−1) and silver (78μgL−1) leached. Zebrafish embryos were exposed until 120h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call