Abstract
The present study investigated the ecotoxicity of raw mining effluent from the largest molybdenum (Mo) open-pit mine in the Qinling mountains, China, and the treated effluent with neutralization and coagulation/adsorption processes, using zebrafish (Danio rerio). The results showed the following: (1) the mining effluent is acid mine drainage (AMD) and is highly toxic to zebrafish with a 96-h median lethal concentration (LC50) of 3.80% (volume percentage) of the raw effluent; (2) sublethal concentrations of the raw effluent (1/50, 1/10, and 1/2 96-h LC50) induced oxidative stress and osmoregulatory impairment, as reflected by the alterations in activities of superoxide dismutase and catalase and contents of malondialdehyde, and inhibition of Na+, K+-ATPase activity in gills and muscle after 28days of sub-chronic exposure when compared with the unexposed group; and (3) the treatment of the raw effluent with neutralizer (NaOH) and adsorbent activated carbon reduced the acute lethal effect of raw effluent. The used endpoints including acute lethal and biochemical parameters related to oxidative stress and osmoregulatory impairment in zebrafish are cost-effective for toxicity assessment of AMD like the studied Mo mining effluent. Mining effluent management strategies extended by these results, i.e., the restriction of discharging raw and diluted effluent to adjacent waterways and the introduction of bio-monitoring system across all mining drainages in this area, were also proposed and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.