Abstract

Ecosystem services (ESs) have received widespread attention worldwide for their potential to solve sustainability issues. However, extensive land use and land cover change (LUCC) driven by human activities has raised concerns regarding its impacts on ESs, especially in coastal zones. More importantly, spatial–temporal changes, their coupling relationships with LUCC, and their underlying drivers have not been thoroughly analyzed. This study focuses on China's coastal zones to investigate the spatial–temporal changes of ecosystem service multifunctionality (ESM) from 2000 to 2018. Coupling coordination degree (CCD) analysis of the relationship between ESM and comprehensive intensity of land use was applied to identify coastal cities with low-level coordination and their main drivers in 2018. The results show that: (1) the proportion with high levels of ESM decreased by 1.01% from 2000 to 2010 and then increased by 3.29% from 2010 to 2018; (2) the ESM of China's coastal zones present significant spatial heterogeneity, and the low levels of ESM are mainly distributed in the north and urban areas, while most areas in the southern coastal zones have high levels of ESM; (3) forest land is the leading land cover type for ESM, and China's forest conservation policies significantly contribute to the increase in ESM; (4) the CCD of most cities in the southern coastal zones, apart from Shanghai and the Pearl River Delta, is at a relatively high level and experiences no significant changes, while most cities in the northern coastal zones display an improving trend; (5) the land use type, landform type, and leaf area index are the determinants of ESM, and the annual average temperature, population density, and surface elevation are the greatest influences on the CCD. The findings of this study can inform ecological conservation and landscape planning and are beneficial to the sustainable development of coastal zones in China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.