Abstract

Assessing the carbon storage capacity of terrestrial ecosystems is crucial for land management and carbon reduction policymaking. There is still a knowledge gap regarding how ecosystem carbon storage will be impacted by combined environmental and land-use factors and their spatial-temporal changes, especially in developed regions where urbanization has slowed down. This study investigated how developed regions in subtropical and tropical areas might increase carbon storage and achieve carbon neutrality, using Guangdong Province in South China as an example. Based on the sustainable development assumption, three land-management scenarios were developed and simulated for 2020–2060 using the Patch-generating Land Use Simulation model. Without considering disturbance and natural losses, carbon storage was estimated by net ecosystem productivity (NEP)—the difference between net primary productivity (NPP) and heterotrophic respiration (HR). NPP was predicted using an artificial neural network model trained by historical NPP data and 16 environmental and land-use variables. HR was predicted using soil respiration models from previous research. Based on the balance between carbon storage and emissions, we predicted the allowable fossil fuel consumption to achieve net-zero CO2 emissions in 2060. The results show that Guangdong's total carbon storage changes from 73.7 MtC in 2020 to 70.6–74.8 MtC in 2060 under different scenarios. Nonlinear relationships exist between the carbon stored and the areas of different land-use types. Topography, temperatures, and land-use configurations jointly lead to significantly varied carbon storage between croplands and between forests in space and time. Protecting and regenerating forests in subtropical areas and forest edges is more effective than afforestation in lowland tropical areas for storing carbon. Net-zero CO2 emissions rely more on reducing emissions than land management. To achieve this, the proportion of fossil energy in total energy consumption should be lowered from 75.5 % in 2020 to ~25 % in 2060.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call