Abstract
Geothermal energy provides an important resource in Antarctic marine ecosystems, exemplified by the recent discovery of large-sized chemosymbiotic vesicomyid bivalves (subfamily Pliocardiinae) in the Southern Ocean. These clams, which we identified as Archivesica s.l. puertodeseadoi, have been reported as dead shells in areas previously covered by Larsen A and B ice shelves (eastern Antarctic Peninsula) and as live animals from active hydrothermal sites in the Kemp Caldera (South Sandwich Arc) at depths of 852–1487 m. Before, A. puertodeseadoi was known only from its type locality in the Argentine Sea, so we considerably extend the range of the species. Observations taken by remotely operated vehicle (ROV) footage show that the clams can live buried in sediment, or epilithically on the surface of rocks in diffuse geothermal flow. Experimental respirometry was conducted at surface pressure on individual bivalves acclimated to either their habitat temperature (4 °C) or elevated temperature (10 °C). The range of standard metabolic rates, from 3.13 to 6.59 (MO2, μmol O2 h−1 g−1 dry tissue mass), is similar to rates measured ex situ for other species in this clade, and rates did not differ significantly between temperature groups. Taken together, these data indicate a range of ecophysiological flexibility for A. puertodeseadoi. Although adapted to a specialist mode of life, this bivalve exploits a relatively broad range of habitats in the Southern Ocean: within sulphidic sediments, epilithically in the presence of diffuse sulphidic flow, or in deep methane-enriched seawater trapped under ice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.