Abstract

PurposeWith the inclusion of significant wind power into the power system, the unit commitment (UC) has become challenging due to frequent variations in wind power, load and requirement of reserves with sufficient ramp rate. The pumped storage units with lesser startup time and cost can take care of these sudden variations and reduce their impact on power system operation. The aim of this paper is to provide a solution model for UC problem in a hybrid power system.Design/methodology/approachThe model developed has been implemented through GAMS optimization tool with CONOPT solver. The model has been called into MATLAB platform by using GAMS‐MATLAB interfacing to obtain solutions.FindingsThe model provides an efficient operating schedule for conventional units and pumped storage units to minimize operating cost and emission. The effects of wind power and load profiles on emission, operating cost and reserve with enough ramping capabilities have been minimized with the use of pumped storage unit. The commitment schedule of thermal and pumped storage units have been obtained with significant wind power integrated into the system for best cost commitment (BCC) and for a combined objective of cost and emission minimization.Originality/valueThis paper finds that the operating cost and emission in a commitment problem can be reduced significantly during variable wind and load conditions in a hybrid system. The model proposed provides operational schedules of conventional and pumped storage units with variable wind power and load conditions throughout operating horizon. The coordinated optimization approach has been implemented on a hybrid system with IEEE‐30 bus system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.