Abstract

Zeolitic imidazole framework 8 (ZIF-8) nanoparticles were successfully synthesized in an aqueous solution at the ambient condition with a relatively low molar ratio of zinc salt and an organic ligand, Zn+2/Hmim (1: 8). ZIF-8 has remarkable thermal and chemical stability, tunable microporous structure, and a great potential for absorption, adsorption, and separation. Various physicochemical characterization techniques like X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), attenuated total reflected infrared spectroscopy (ATR-IR), thermogravimetric analysis (TGA), and surface area with pore textural properties by micromeritics gas adsorption equipment were performed to investigate the effect of base type additive triethylamine (TEA) on the morphology, crystallinity, yield, particle and crystal size, thermal stability and microporosity of ZIF-8 nanoparticles. The total quantity of basic sites and carbon dioxide (CO2) desorption aptitude was also calculated using CO2 temperature-programmed desorption (CO2-TPD) system. The pure ZIF-8 nanoparticles of 177 nm were formed at TEA/total mole ratio of 0.002. Furthermore, the size of ZIF-8 nanoparticles was decreased to 77 nm with increasing TEA/total mole ratio up to 0.004. The structures, particle sizes and textural properties of ammonia modified ZIF-8 particle can easily be tailored by the amount of aqueous ammonium hydroxide solution. The smallest ZIF-8 nanoparticles obtained were 75 nm after ammonia modification which shows excellent thermal stability and improved microporosity. The ZIF-8 basicity and uptakes of CO2 improved with TEA and ammonia modification which followed the order: A25ml–Z4 > Z4 > Z3 > Z5 > Z2 > A50ml–Z4. The proposed economical and efficient synthesis method has great potential for large-scale production of ZIF-8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.