Abstract

In this study, zeolitic imidazolate framework-8 (ZIF-8) nanosorbent was successfully synthesized via a facile method at room temperature. The ZIF-8 nanoparticles were characterized by nitrogen sorption, powder X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and Zeta potential. The synthesized ZIF-8 nanoparticles exhibited a high surface area of 1063.5 m(2)/g and were of 200-400 nm in particle size. The kinetic and isotherm data of arsenic adsorption on ZIF-8 were well fitted by pseudo-second-order and Langmuir models, respectively. The maximal adsorption capacities of As(III) and As(V) were of 49.49 and 60.03 mg/g, respectively, at T = 25 degrees C and pH 7.0. The ZIP-8 nanoparticles were stable at neutral and basic conditions. However, large amounts of Zn2+ were released into water from the sorbent at acidic condition, which dramatically hindered the adsorption of arsenic. SO42- and NO3- had no significant effect on the arsenic adsorption while the adsorption was significantly inhibited by PO43- and CO32-. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis revealed that electrostatic attraction and hydroxyl and amine groups on ZIF-8 surface played vital roles in the adsorption process. (C) 2014 Elsevier B.V. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call