Abstract

China has built the world's largest high-speed railway (HSR) network, which has fueled regional economic growth. Mounting photovoltaics (PV) on the roofs of HSR station houses and platforms can potentially provide electricity for high-speed trains, change the energy mix, and reduce emissions. Therefore, it is crucial to assess the technical potential and economic environmental performance of PV for the HSR infrastructure. In this study, the PV potential of 973 stations of 108 HSR lines in China was studied in conjunction with geographic information system (GIS). The results showed that the PV capacity that can be deployed in China's HSR stations at horizontal and optimum tilt angles was 4.36 GW and 2.81 GW, with a total power generation capacity of 108.55 TWh and 74.88 TWh, respectively, which presented a huge power generation potential. The economic analysis showed that the All-consumption scenario and optimum tilt angle had better economic profits than the All-feed-into-grid scenario and the horizontal angle, respectively. Moreover, the use of PV could reduce carbon emissions by HSR stations by 79,895.73 kilotons and 55,112.53 kilotons at horizontal and optimum tilt angles, respectively. The study revealed that the combination of PV and HSR infrastructure was a good strategy for sustainable transportation and carbon neutrality goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call