Abstract

The governments world-wide are deliberating to promote renewable energy sources such as wind to mitigate increasing demand of energy and to overcome effects of pollution due to to use of fossil fuels. Integration of wind turbine generators (WTG) with the diesel plants is pursued widely to reduce dependence on fossil-fuels and to reduce carbon emissions. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (K.S.A) consume an estimated 10 - 40% of the total electric energy generated. The aim of this study is to analyze wind-speed data of Dhahran (East-Coast, K.S.A.) to assess the economic feasibility of utilizing hybrid wind-diesel power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100 kW commercial WTG supplemented with diesel generators. NREL?s (HOMER Energy?s) HOMER software has been employed to perform the techno-economic analysis. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity together with 175 kW diesel system, the wind penetration (at 37 m hub-height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind-diesel system has been found to be 0.121 $/kWh (assuming diesel fuel price of 0.1$/liter). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel gensets decreases with increase in wind farm capacity. Emphasis has also been placed on wind penetration, un-met load, energy production and COE, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind-diesel systems, COE of different hybrid systems, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.