Abstract

The recent focus on energy-related environmental issues, such as the depletion of fossil fuels and the climate change, has led to a pressing need for sustainable energy supply systems. Existing systems may, in theory, be revamped into sustainable systems by including new components such as renewable energy sources (RES) and carbon capture and utilization (CCU) frameworks. However, economically and environmentally optimal mechanisms for the integration of RES and CCU frameworks into existing energy systems have yet to be determined. Therefore, this study presents a new approach to sustainable energy supply systems by integrating a RES-based system with existing technologies, coupled with a CCU framework. To address both economic and environmental benefits of the proposed system, a multi-objective optimization technique comprising two objective functions (total daily cost and the total CO2 emission) was developed using a mixed integer linear programming (MILP). The capability of the proposed model is illustrated by a case study of the future transportation sector in Korea. The Pareto solutions for the optimal energy supply system were identified according to CO2 reduction targets under different energy price scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.