Abstract
AbstractMost automotive plastic waste (APW) is landfilled or used in energy recovery as it is unsuitable for high‐quality product mechanical recycling. Chemical recycling via pyrolysis offers a pathway toward closing the material loop by handling this heterogeneous waste and providing feedstock for producing virgin plastics. This study compares chemical recycling and energy recovery scenarios for APW regarding climate change impact and cumulative energy demand (CED), assessing potential environmental advantages. In addition, an economic assessment is conducted. In contrast to other studies, the assessments are based on pyrolysis experiments conducted with an actual waste fraction. Mass balances and product composition are reported. The experimental data is combined with literature data for up‐ and downstream processes for the assessment. Chemical recycling shows a lower net climate change impact (0.57 to 0.64 kg CO2e/kg waste input) and CED (3.38 to 4.41 MJ/kg waste input) than energy recovery (climate change impact: 1.17 to 1.25 kg CO2e/kg waste input; CED: 6.94 to 7.97 MJ/kg waste input), while energy recovery performs better economically (net processing cost of −0.05 to −0.02€/kg waste input) compared to chemical recycling (0.05 to 0.08€/kg waste input). However, chemical recycling keeps carbon in the material cycle contributing to a circular economy and reducing the dependence on fossil feedstocks. Therefore, an increasing circularity of APW through chemical recycling shows a conflict between economic and environmental objectives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.