Abstract
Due to the minimal transfer of heat from absorber plate to moving air in the duct, solar air heaters have low performance. One of the procedures to augment the heat transfer by substantial amount is by utilizing artificial roughness, by which the performance can be improved considerably. In this study, an economic investigation of solar air heater embedded with artificial roughness is accomplished numerically employing v-shaped roughness, with the objective of optimising life cycle solar savings. The non-dimensional parameters of roughness, namely, angle of attack (α), roughness pitch (p/e) and roughness height (e/Dh) are examined by varying temperature rise over the solar air heater (∆T) and solar radiations (I) for different economic parameters values i.e., cost of collector, cost of roughness elements, and cost of conventional fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.