Abstract

Teeth are conspicuous features of many leaves. The percentage of species in a flora with toothed leaves varies inversely with temperature, but other ecological controls are less known. This gap is critical because leaf teeth may be influenced by water availability and growth potential and because fossil tooth characters are widely used to reconstruct paleoclimate. Here, we test whether ecological attributes related to disturbance, water availability, and growth strategy influence the distribution of toothed species at 227 sites from Australian subtropical rainforest. Both the percentage and abundance of toothed species decline continuously from riparian to ridge-top habitats in our most spatially resolved sample, a result not related to phylogenetic correlation of traits. Riparian lianas are generally untoothed and thus do not contribute to the trend, and there is little association between toothed riparian species and ecological attributes indicating early successional lifestyle and disturbance response. Instead, the pattern is best explained by differences in water availability. Toothed species' proportional richness declines with proximity to the coast, also a likely effect of water availability because salt stress causes physiological drought. Our study highlights water availability as an important factor impacting the distribution of toothed species across landscapes, with significance for paleoclimate reconstructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.