Abstract

High ammonia pollution is a common problem in water bodies. However, research on the mechanisms underlying the toxic effects on organisms at different nutritional levels is still insufficient. Herein, based on the environmental concentration, the toxic effects of high ammonia pollution on Daphnia magna were investigated. Overall, the feeding and filtration rates of D. magna were significantly decreased by ammonia. Growth inhibition of D. magna by ammonia was confirmed by the decreased body length. After ammonia exposure, the metabolic status of D. magna changed, the correlation network weakened, and the correlations between metabolites were disrupted. Changes occurred in metabolites primarily involved in oxidative stress, fatty acid oxidation, tricarboxylic acid cycle, and protein digestion, absorption, and synthesis, which were validated through alterations in multiple biomarkers. In addition, mitochondrial function was evaluated and was found to inhibit mitochondrial activity, which was accompanied by a decreased marker of mitochondrial activity contents and ATPase activity. Thus, the results suggested that energy metabolism and oxidative stress were involved in ammonia-induced growth toxicity. This study provides new insights into the impact of ammonia on aquatic ecological health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.