Abstract
The application of nitrogen fertilizers in the rice-crab co-culture system may expose juvenile Eriocheir sinensis to high ammonia concentrations within a short period of time, potentially causing death. Currently, the molecular mechanism underlying ammonia toxicity in juvenile Eriocheir sinensis remains poorly understood. This study compared the effects of 24 h exposure to different total ammonia-N concentrations (0, 10.47, and 41.87 mg/L) on antioxidant enzyme activities and tandem mass tag (TMT)-based proteomics in the hepatopancreas of juvenile Eriocheir sinensis. During the experiment, water temperature and pH were maintained at 20.4 ± 1.4 °C and 7.69 ± 0.46, respectively. Proteomic data demonstrated that Eriocheir sinensis used different metabolic regulatory mechanisms to adapt to varying ammonia conditions. The tricarboxylic acid (TCA) cycle, glycogen degradation, and oxidative phosphorylation showed marginally upregulated trends under low ammonia exposure. High ammonia stress caused downregulation of the TCA cycle and provided energy by enhancing oxidative phosphorylation, fatty acid beta oxidation, gluconeogenesis, and glycogen degradation. The detoxification of ammonia into urea and glutamine was suppressed under high ammonia stress. Finally, ammonia exposure induced oxidative stress and caused protein damage. Antioxidant enzyme activity analysis further revealed that exposure to high concentrations of ammonia may induce more severe oxidative stress. This study provides a global perspective on the mechanisms underlying ammonia exposure-induced metabolic changes and stress damage in juvenile Eriocheir sinensis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.