Abstract

The application of nitrogen fertilizers in the rice-crab co-culture system may expose juvenile Eriocheir sinensis to high ammonia concentrations within a short period of time, potentially causing death. Currently, the molecular mechanism underlying ammonia toxicity in juvenile Eriocheir sinensis remains poorly understood. This study compared the effects of 24 h exposure to different total ammonia-N concentrations (0, 10.47, and 41.87 mg/L) on antioxidant enzyme activities and tandem mass tag (TMT)-based proteomics in the hepatopancreas of juvenile Eriocheir sinensis. During the experiment, water temperature and pH were maintained at 20.4 ± 1.4 °C and 7.69 ± 0.46, respectively. Proteomic data demonstrated that Eriocheir sinensis used different metabolic regulatory mechanisms to adapt to varying ammonia conditions. The tricarboxylic acid (TCA) cycle, glycogen degradation, and oxidative phosphorylation showed marginally upregulated trends under low ammonia exposure. High ammonia stress caused downregulation of the TCA cycle and provided energy by enhancing oxidative phosphorylation, fatty acid beta oxidation, gluconeogenesis, and glycogen degradation. The detoxification of ammonia into urea and glutamine was suppressed under high ammonia stress. Finally, ammonia exposure induced oxidative stress and caused protein damage. Antioxidant enzyme activity analysis further revealed that exposure to high concentrations of ammonia may induce more severe oxidative stress. This study provides a global perspective on the mechanisms underlying ammonia exposure-induced metabolic changes and stress damage in juvenile Eriocheir sinensis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call