Abstract
Pesticide additives (PAs) are auxiliary ingredients added to the pesticide manufacturing and use processes, constituting 1% to 99% of the pesticide and often composed of benzene and chlorinated hydrocarbons. We selected three typical PAs, toluene, chloroform, and trichloroethylene, to evaluate their retention function toxicity and ecological risk in soil. Soil immobilization techniques and aquatic model organisms were used to demonstrate the effectiveness of the immobilized soil method to determine the ecological risk of chemicals. The 48-h median lethal concentrations of toluene, chloroform, and trichloroethylene alone in spiked soil on Daphnia magna were 10.5, 2.3, and 1.1 mg/L (medium, high, and high toxicity, respectively). The toxicity of the three-PA mixtures showed an antagonistic effect. The risk levels of toluene, chloroform, and trichloroethylene in the soil were evaluated as moderate to high, low to high, and high risk, respectively. The toxicity of two pesticide-contaminated sites in the Yangtze River Delta before and after remediation was successfully evaluated by immobilized soil technology. The toxicity of two soil sampling points was reduced from medium toxic to low toxic and no toxic, respectively, after remediation. The results of our study give a rationale for and prove the validity of the aquatic model organisms and soil immobilization techniques in assessing the soil retention functions toxicity of PAs. Environ Toxicol Chem 2024;43:1677-1689. © 2024 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.