Abstract

Google Earth Engine (GEE) has revolutionized geospatial analyses by fast-processing formerly demanding analyses from multiple research areas. Recently, maximum entropy (MaxEnt), the most commonly used method in ecological niche models (ENMs), was integrated into GEE. This integration can significantly enhance modeling efficiency and encourage multidisciplinary approaches of ENMs, but an evaluation assessment of MaxEnt in GEE is lacking. Herein, we present the first MaxEnt models in GEE, as well as its first statistical and spatial evaluation. We also identify the limitations of the approach, providing guidelines and recommendations for its easier applicability in GEE.We tested MaxEnt in GEE using 11 case studies. For each case, we used species of different taxa (insects, amphibians, reptiles, birds and mammals) distributed across global and regional extents. Each species occupied habitats with distinct environmental characteristics (nine terrestrial and two marine species) and within divergent ecoregions across five continents. The models were performed in GEE and Maxent software, and both approaches were contrasted for their model discrimination performance (assessed by eight evaluation metrics) and spatial consistency (correlation analyses and two measures of niche overlap/equivalency).MaxEnt in GEE allows setting several parameters, but important analyses and outputs are unavailable, such as automatic selection of background data, model replicates, and analyses of variable importance (concretely, jackknife analyses and response curves). GEE provided MaxEnt models with high discrimination performance (area under the curve mean between all species models of 0.90) and with spatial equivalency in relation to Maxent software outputs (Hellinger's I mean between all species models >0.90).Our work demonstrates the first application and assessment of MaxEnt in GEE at global and regional scales. We conclude that the GEE modeling method provides ENMs with high performance and reliable spatial predictions, comparable to the widely used Maxent software. We also acknowledge important limitations that should be integrated into GEE in the future, particularly those related to the assessment of variable importance. We expect that our guidelines, recommendations and potential solutions to surpass the identified limitations could help researchers easily apply MaxEnt in GEE across different research fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call