Abstract
Effects of anoxic-oxic conditions on the growth of sulfate reduction, poly-P accumulation and filamentous sulfur bacteria were examined in the laboratory scale sequential batch reactors. In the anoxic-oxic conditions, denitrification bacteria are dominant. The growth of sulfate reducing bacteria and poly-P accumulating bacteria was suppressed. The number of sulfate reducing bacteria in the activated sludge was below 104 MPN/g MLSS, and the sulfate reduction rate was very low. Filamentous bulking was also suppressed. On the other hand, when nitrate was removed from the artificial wastewater, sulfate reducing bacteria could grow predominantly in the anaerobic conditions. The number of sulfate reducing bacteria was about 106∼107 MPN/g MLSS and the sulfate reduction rate increased (0.17 ∼ 0.21 g SO4/g MLSS·hr). Filamentous bacteria Type 021N increased over 103 cm/mg MLSS. Sodium molybdate was added to the artificial wastewater in order to prevent sulfate reduction. When the concentration of sodium molybdate increased to 980 mg/L, the number of sulfate reducing bacteria decreased to 103 ∼ 104 MPN/g MLSS and the sulfate reduction rate decreased. Filamentous bulking was completely suppressed in these conditions. These results show that sulfate reduction is a main trigger of the filamentous bulking due to Type 021N that can utilize reduced sulfur for an energy source.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have