Abstract

We consider here forecasting models in ecology or in agronomy, aiming at decision making based upon exceeding a quantitative threshold. We address specifically how to link the intrinsic quality of the model (its accuracy) with its decisional quality, ie its capacity to avoid false decisions and their associated costs. The accuracy of the model can be evaluated by the ρ of the regression of observed values versus estimated ones or by the determination coefficient R2. We show that the decisional quality depends not only of this accuracy but also of the threshold retained to make the decision as well as on the state of nature. The two kinds of decisional errors consists either in deciding no action while an action is required (false negatives) or to act while it is useless (false positives). We also prove that the costs associated to those decisions depend also both of the accuracy of the model and of the value of the decision threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.