Abstract

Sexual differences in parental investment, predation pressure, and foraging efforts are common in nature and affect the trophic flow in food webs. Specifically, the sexual differences in predator and prey behavior change in trophic inflow and outflow, respectively, while those in parental investment alter the reproductive allocation of acquired resources in the population. Consequently, these factors may play an important role in determining the system structure and persistence. However, few studies have examined how sexual differences in trophic flow affect food web dynamics. In this study, I show the ecological role of sex by explicitly incorporating sexual differences in trophic flow into a three‐species food web model. The results demonstrated that the ecological waste of males, that is, the amount of trophic inflow into males with less parental investment, plays an important role in system persistence and structure. In particular, the synergy between sexual differences in parental investment and trophic inflows and outflows is important in determining web persistence: Significant impacts of male‐biased trophic flows require the condition of anisogamy. In addition, the dynamic effects of the ecological waste of males differ with trophic level: The coexistence of a food web occurs more frequently with biased inflows into predator males, but occurs less frequently with biased inflows into consumer males. The model analysis indicates that investigating the pattern of sexual differences among trophic positions can enrich our understanding of food web persistence and structure in the real world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call