Abstract

Global warming and ocean acidification are forecast to exert significant impacts on marine ecosystems worldwide. However, most of these projections are based on ecological proxies or experiments on single species or simplified food webs. How energy fluxes are likely to change in marine food webs in response to future climates remains unclear, hampering forecasts of ecosystem functioning. Using a sophisticated mesocosm experiment, we model energy flows through a species-rich multilevel food web, with live habitats, natural abiotic variability, and the potential for intra- and intergenerational adaptation. We show experimentally that the combined stress of acidification and warming reduced energy flows from the first trophic level (primary producers and detritus) to the second (herbivores), and from the second to the third trophic level (carnivores). Warming in isolation also reduced the energy flow from herbivores to carnivores, the efficiency of energy transfer from primary producers and detritus to herbivores and detritivores, and the living biomass of detritivores, herbivores, and carnivores. Whilst warming and acidification jointly boosted primary producer biomass through an expansion of cyanobacteria, this biomass was converted to detritus rather than to biomass at higher trophic levels—i.e., production was constrained to the base of the food web. In contrast, ocean acidification affected the food web positively by enhancing trophic flow from detritus and primary producers to herbivores, and by increasing the biomass of carnivores. Our results show how future climate change can potentially weaken marine food webs through reduced energy flow to higher trophic levels and a shift towards a more detritus-based system, leading to food web simplification and altered producer–consumer dynamics, both of which have important implications for the structuring of benthic communities.

Highlights

  • Forecasting the effect of global change on ecosystem functioning is a major challenge in ecology [1], partly because future climate shifts are likely to reorganize complex food webs, generating novel communities composed of new combinations of species [2]

  • Neither warming nor acidification affected the energy flow originating from primary producers and detritus at trophic level 1 (Fig 1; S1 Table)

  • Energy flow was higher in the elevated CO2 (OA)-only treatment compared to the controls (p = 0.011; post hoc energy flow: high CO2 > control)

Read more

Summary

Introduction

Forecasting the effect of global change on ecosystem functioning is a major challenge in ecology [1], partly because future climate shifts are likely to reorganize complex food webs, generating novel communities composed of new combinations of species [2]. Climate change can independently affect, or synergistically amplify, the effect of other disturbances such as habitat degradation, species overexploitation, and species invasions [12] This can reconfigure future food webs through major structural changes, like shifts in the number of trophic groups and links that connect species at the top of the food chain to basal species, which can result in altered flows of energy and shifts in the biomass of key functional groups, leading to biodiversity loss, with potentially serious implications for ecosystem functioning [13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.