Abstract

Increases in terrestrially-derived dissolved organic matter (DOM) have led to the browning of inland waters across regions of northeastern North America and Europe. Short-term experimental and comparative studies highlight the important ecological consequences of browning. These range from transparency-induced increases in thermal stratification and oxygen (O2) depletion to changes in pelagic food web structure and alteration of the important role of inland waters in the global carbon cycle. However, multi-decadal studies that document the net ecological consequences of long-term browning are lacking. Here we show that browning over a 27 year period in two lakes of differing transparency resulted in fundamental changes in vertical habitat gradients and food web structure, and that these responses were stronger in the more transparent lake. Surface water temperatures increased by 2–3 °C in both lakes in the absence of any changes in air temperature. Water transparency to ultraviolet (UV) radiation showed a fivefold decrease in the more transparent lake. The primary zooplankton grazers decreased, and in the more transparent lake were largely replaced by a two trophic level zooplankton community. These findings provide new insights into the net effects of the complex and contrasting mechanisms that underlie the ecosystem consequences of browning.

Highlights

  • IntroductionLake Lacawac is a 21 ha dystrophic brown-water lake (DOC = 5–6 mg C L−1) with a maximum depth of 13 m and a catchment located within a sanctuary preserve, while Lake Giles is a 48 ha oligotrophic clear-water lake (DOC = 1–2 mg C L−1) with a maximum depth of 23 m and a catchment located within a privately owned and well-protected watershed

  • Where lakes are browning[2,3,6,16]

  • Lake Lacawac is a 21 ha dystrophic brown-water lake (DOC = 5–6 mg C L−1) with a maximum depth of 13 m and a catchment located within a sanctuary preserve, while Lake Giles is a 48 ha oligotrophic clear-water lake (DOC = 1–2 mg C L−1) with a maximum depth of 23 m and a catchment located within a privately owned and well-protected watershed

Read more

Summary

Introduction

Lake Lacawac is a 21 ha dystrophic brown-water lake (DOC = 5–6 mg C L−1) with a maximum depth of 13 m and a catchment located within a sanctuary preserve, while Lake Giles is a 48 ha oligotrophic clear-water lake (DOC = 1–2 mg C L−1) with a maximum depth of 23 m and a catchment located within a privately owned and well-protected watershed. These lakes are near and below the global median DOC concentration of 5.7 mg C L−1 for lakes[17]. There have been no changes in land use or land cover in the privately owned and well-protected catchments, leaving only atmospheric or meteorological factors as potential agents of external forcing in these lakes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.