Abstract

The bioaccumulation of methylmercury (MeHg) within the pelagic food webs is a crucial determinant of the MeHg concentration in the organisms at higher trophic levels. Dissolved organic matter (DOM) is recognized for its influence on mercury (Hg) cycling in the aquatic environment because of its role in providing metabolic substrate for heterotrophic organism and serving as a strong ligand for MeHg. However, the impact of DOM on MeHg bioaccumulation in pelagic food chains remain controversial. Here, we explored MeHg bioaccumulation within a pelagic food web in China, in the eutrophic Bohai Sea and adjacent seas, covering a range of DOM concentrations and compositions. Our findings show that elevated concentrations of dissolved organic carbon (DOC) and phytoplankton biomass may contribute to a reduction in MeHg uptake by phytoplankton. Moreover, we observe that a higher level of autochthonous DOM in the water may result in more significant MeHg biomagnification in zooplankton. This can be explained by alterations in the structure of pelagic food webs and/or an increase in the direct consumption of DOM and particulate organic matter (POM) containing MeHg. Our study offers direct field monitoring evidence of dual roles played by DOM in regulating MeHg transfers from water to phytoplankton and zooplankton in coastal pelagic food webs. A thorough understanding of the intricate interactions is essential for a more comprehensive evaluation of ecological risks associated with MeHg exposure in coastal ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call